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Abstract

In this project, we describe a framework that nests a great variety of in-

terpolation setups and relaxes the co-integration conditions of temporal dis-

aggregation in the literature. Our goal is to evaluate alternative interpolation

models and then to produce a monthly deseasonalized Taiwan’s real gross do-

mestic product and make it available for researchers and practitioners. Our

empirical result shows that the monthly estimates, incorporated with the in-

formation obtained from the related series, are consistent with the quarterly

figures. These estimates could be very helpful for short-run policy analysis by

signalling any emerging economic problems.

JEL classification: C51, E31, E47

Keywords: interpolation, Kalman filter, temporal disaggregation, state-space

model.



1 Introduction

A problem often encountered by Council for Economic Planning and Develop-

ment (CEPD) of the Executive Yuan and more generally by macroeconomic

researchers is the interpolation or distribution of economic time series. For

interpolation, the task is to estimate the missing values of a stock variable in

a higher frequency when the observed values of the series are only reported

at less frequent periods. In the distribution case, on which this paper concen-

trates, the problem concerns the estimation of intraperiod values for a flow

variable subjected to the constraint that their sums, or averages, equal the

aggregates over the lower frequency of observations. These two processes, usu-

ally called “temporal disaggregation techniques”, play an important role for

the estimation of short-term economic indicators. Several national statistical

institutes of European countries, including France, Italy, Spain, Belgium and

Portugal, have made extensive use of these techniques to estimate the Euro

area GDP; see e.g., Eurostat (1999) for more details.

The need for temporal disaggregation can stem from a number of reasons.

For example, in multiple time-series analysis, monthly data are available for

all series but one, for which only quarterly data are observed. Instead of

aggregating all other series to quarterly totals which produces specification

errors (Rossana and Seater, 1995) and leads to a considerable loss of infor-

mation, it is more reasonable to disaggregate the quarterly data to monthly

figures. For another example, consider the case that a time series has been

observed annually over several decades. Due to the increasing importance of

the series, the official bureau decided to release quarterly figures for the vari-

ables some years ago. Thus, the researchers have a time series with annual

observations in the first part and quarterly figures in the remainder. A well-

known example is that the annual observations of the Taiwan GDP series have

been available since 1951, but the quarterly figures of the series were reported

only after 1961. In order to fully utilize all the available data for time series

modelling, it is desirable to disaggregate the previous yearly observations to
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quarterly values.

Temporal disaggregation techniques have been widely studied in the time

series literature. Broadly speaking, methods for disaggregation can be classi-

fied into two approaches, namely (1) methods that involve the use of observed

related series at the desired higher frequency and (2) methods that rely only

on purely time series models and do not make use of the information obtained

from the related series. The former has been discussed by a number of au-

thors, of whom one of the first was Friedman (1962). Subsequent contributions

have been made by Chow and Lin (1971), Denton (1971), Ginsburgh (1973),

Gilbert (1977), Fernández (1981), Litterman (1983) and de Alba (1988), to

name a few. The latter approach was explored by Wei and Stram (1990)

and Guerrero (1990). It depends on the autoregressive integrated moving-

average (ARIMA) representation of the series to be disaggregated. Although

these two approaches are potentially applicable to a wide variety of cases, they

rely mainly on undesired and/or arbitrary assumptions. For example, the for-

mer does not accommodate the possibility of some dynamic structure; it also

postulates full co-integration relation between the nonstationary related series

and the unobserved disaggregated time series à priori.1 The latter extracts

signals only from the presumed stochastic process of the series in a way that

no other related information is added.

This project concentrates on an alternative method, namely the state-space

approach, which was first introduced by Harvey (1989) and later developed by

Harvey and Koopman (1997). Given the state-space representation discussed

in this project, it can be seen that the proposed model is able to describe

dynamic structure of disaggregated time series and allows for high frequency

related series without imposing the assumption of co-integration relation. The

exact Kalman filtering and smoothing algorithms recently introduced by Koop-

man (1997) and Koopman and Durbin (2003) are then used to evaluate the

1It has been shown that mis-imposing co-integration constraints in the series is dangerous

and may result in inferior forecasts; see e.g., Reinsel and Ahn (1992) and Lin and Tsay (1996)

for more details.
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likelihood function and to estimate real gross domestic product (GDP) at

monthly intervals. A major advantage of using the Kalman filter is that it

computes the optimal estimates of the latent monthly GDP. It also provides a

way to calculate exact finite-sample forecasts based on the appropriate infor-

mation set. In the empirical study, we apply the proposed model to seasonally

adjusted, quarterly Taiwan’s real GDP for the period of 1961:I to 2006:II with

182 observations. The smoothing estimate and the associated confidence inter-

vals are thus reported for up-to-date information about the state of Taiwan’s

economy.

The project is organized as follows: Section 2 introduces the state space

methodology and shows how it can be applied to series that can be modelled

by nonstationary ARIMA processes. Section 3 presents the empirical analysis

of Taiwan’s real GDP based on the proposed model. Section 4 presents our

conclusions. Appendix briefly reviews the exact Kalman filter and smoother

algorithms.

2 State-Space Approach

The basic idea of the state space model is that an observable time series under

study can be explained by a vector of unobserved components. The unobserved

vector which is assumed to be a first-order Markov process is linked to the

observed variable via a measurement equation. Such a modelling approach

provides a unified methodology for treating a wide range of problems in time

series analysis. Once a model has been put in the state space form, the Kalman

filter may be applied and this in turn leads to algorithms for filtering and

smoothing. In the present project the aim is to extract unobservable monthly

GDP from the published quarterly real GDP, subject to the constraint that

the sum of past and current monthly GDP must equal the quarterly data. In

addition, the estimation of the latent monthly GDP is based on the presumed

ARIMA process and related observed monthly indicators.
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2.1 The State-Space Representation

To illustrate our basic idea, let ÿτ be the seasonally adjusted, quarterly real

GDP at time τ and ÿτ = (0 0 ÿτ )
′ be a 3× 1 vector of observations. Then we

stack the observations ÿτ in one column vector to get y = (ÿ′
1 ÿ′

2 . . . ÿ′
T )′,

where T is the number of quarterly real GDP. Also let yt denote the tth element

of y. We assume that the unobserved monthly GDP, y∗t , satisfies the sum-up

constraint

yt =

2∑
i=0

y∗t−i, t = 3, 6, 9, . . . , 3T. (1)

We further assume that the difference of y∗t follows an ARMAX(p, q) process

Ψ(B)z∗t = x′
tβ + Φ(B)εt, t = 1, 2, 3, . . . , 3T, (2)

where εt is a martingale difference sequence with mean zero and variance σ2
ε ,

z∗t = y∗t − y∗t−1, Ψ(B) = 1 − ψ1B − · · · − ψpB
p and Φ(B) = 1 + ϕ1B +

· · ·+ϕqB
q are finite-order polynomials of the back-shift operator B such that

they have no common factors and their roots are all outside the unit circle.

The related monthly indicators xt are observable and weakly stationary. As

can be seen in (1) and (2), the proposed model is capable of exhibiting the

dynamic patterns of monthly GDP and allows for related exogenous variables.

Moreover, in our model, it is only assumed that there exists a linear relationship

between z∗t and xt which are all weakly stationary. Hence, any co-integration

restriction between y∗t and related variables is not required.

It is now easy to show that the proposed model in (1) and (2) can be ex-

pressed as a state-space model with the following measurement and transition

equations:2

yt = h′
tγt,

γt+1 = µt + Fγt + Rεt+1,
(3)

2Another alternative not treated in this project to introduce the sum-up constraint is

to augment the state-space representation with a “cumulator function”, which accumulates

monthly GDP observations in a given quarter; see Harvey (1989) and Proietti (2006) for

more details.
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for t = 1, 2, 3, . . . , 3T , where a (r+2)-dimensional vector ht = (1 0 · · · 0 2 1)′

if t = 3, 6, 9, . . . , 3T and ht = 0 otherwise;

γt =




z∗t∑r
i=2 ψiz

∗
t−i+1 +

∑r
i=2 ϕi−1εt−i+2∑r

i=3 ψiz
∗
t−i+2 +

∑r
i=3 ϕi−1εt−i+3

...

ψrz
∗
t−1 + ϕr−1εt

y∗t−1

y∗t−2




(r+2)×1

,

r = max(p, q + 1), ψi = 0 for i > p and ϕi = 0 for i > q. The terms F and R

are fixed matrixes such that

F =




ψ1 1 0 · · · 0 0 0

ψ2 0 1 · · · 0 0 0
...

...
...

...
...

...
...

ψr−1 0 0 · · · 1 0 0

ψr 0 0 · · · 0 0 0

1 0 0 · · · 0 1 0

0 0 0 · · · 0 1 0




(r+2)×(r+2)

, R =




1

ϕ1

ϕ2

...

ϕr−1

0

0




(r+2)×1

,

and µt = (x′
t+1β 0 · · · 0)′ is a (r+2)×1 vector. The state-space representation

in (3) is sufficiently rich to accommodate the traditional linear disaggregation

techniques. It can encompass the most popular techniques such as Chow and

Lin (1971), Hendry and Mizon (1978), Frenández (1981) and Litterman (1983);

see Proietti (2006) for more detailed comparisons between these techniques.

2.2 The Exact Initial Kalman Filter

Because {yt} in (3) is nonstationary, the density of the observations does not

exist and so the likelihood is not defined in the usual sense. We therefore fol-

low De Jong (1991) and deal with the likelihood evaluation by using a diffuse
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initial state in the state space model.3 Instead of estimating y∗0 and y∗−1 in

the initial state vector (i.e., γ1), we treat these elements as diffuse random

elements. A simple approximate technique to handle diffuse random elements

is to initiate the Kalman filter by a very large covariance matrix; see e.g.,

Harvey and Phillips (1979) and Nelson and Kim (1999). While this device

is computationally convenient for approximating exploratory work, it is the-

oretically unsatisfactory. It might lead to large rounding errors and suffer

from the potential “divergence” problem, cf. Kalman and Bucy (1961) and

Fitzgerald (1971). We thus follow Koopman (1997) to develop an exact initial

treatment.

In model (3), the initial state vector γ1 can be specified as

γ1 = A0δ + R0η0,

where δ ∼ N(0, κI) is a 2 × 1 random vector with κ→ ∞,

A0 =




0 0
...

...

0 0

1 0

0 1




(r+2)×2

, R0 =




1 0 · · · 0

0 1 · · · 0
...

...
... 0

0 0 · · · 1

0 0 · · · 0

0 0 · · · 0




(r+2)×r

,

η0 ∼ N(0,Q0) is a r × 1 random vector with Q0 being the unconditional

variance matrix of the first r elements of γt, and cov(δ,η0) = 0. The initial

conditions for the state vector become IE(γ1) = 0 and var(γ1) = P , where

P = κP∞ + P ∗

as κ→ ∞, P∞ = A0A
′
0 and P ∗ = R0Q0R

′
0. Let P t|t−1 denote the covariance

matrix of γt conditional on the information available up to time t − 1. The

term P t|t−1 can be decomposed in a similar way to matrix P , i.e.,

P t|t−1 = κP∞,t|t−1 + P ∗,t|t−1 +O(κ−1), t = 1, 2, 3, . . . , 3T,

3A state is said to be diffuse if its covariance matrix is arbitrarily large. Diffuse initial

states arise in the context of model nonstationarity.
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where P∞,t|t−1 and P ∗,t|t−1 do not depend on κ. It has been shown by Koop-

man (1997) that the influence of the term P∞,t|t−1 will disappear after a limited

number of updates n of the exact initial Kalman filter. Therefore, the stan-

dard Kalman filter algorithm can be applied to evaluate the model (3) for

t = n+1, n+2, . . . , 3T when κ→ ∞. A detailed description of this algorithm

is given in the Appendix A. In Appendix B, we briefly discuss the exact initial

state algorithm for t = 1, . . . , n. The diffuse log-likelihood of the proposed

model is thus a byproduct of the algorithms discussed in the Appendixes A

and B; for a comprehensive review of the algorithms for diffuse state-space

models we refer to Koopman (1997) and Koopman and Durbin (2003).

From the recursions of the exact Kalman filter algorithm we obtain the

filtered series γt|t = IE(γt | Ωt) and all the quantities that are necessary for the

evaluation of the diffuse log-likelihood function discussed in Koopman (1997),

where Ωt is the collection of all the observed variables up to time t. The

approximate quasi-maximum likelihood estimates (QMLE),

θ̂ = (β̂, ψ̂1, . . . , ψ̂p, ϕ̂1, . . . , ϕ̂q, σ̂ε)
′,

can then be found using a numerical-search method. Our program is written in

GAUSS which employs the BFGS (Broyden-Fletcher-Goldfarb-Shanno) search

algorithm. Plugging θ̂ into the smoothing recursions proposed by Koopman

and Durbin (2003) we can obtain the estimated smoothed series γt|T = IE(γt |
ΩT ), which are the optimal forecasts of γt based on all information in the

sample. Our estimates of the seasonally adjusted monthly GDP are then

constructed by the smoothed series γt|T ,

3 Empirical Study

To demonstrate the applicability of the state-space approach, we apply the

model (3) with a diffuse initial state to Taiwan’s real GDP form 1961:I –

2006:II. According to the economic intuition and the quality of the data, a

constant term and the change of industrial production index (IPI) are selected
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Table 1: Quasi-maximum likelihood estimates of the proposed state-space model.

Estimate Estimate Standard error t-statistic

β̂0 17.1668 4.5819 3.7466∗

β̂1 1.6227 0.4231 3.8352∗

ψ̂1 0.9462 0.0143 66.1678∗

ϕ̂1 −2011.1024 200.1948 −10.0457∗

ϕ̂2 2146.5556 211.0155 10.1725∗

σ̂ε 1.6308 0.1730 9.4265∗

Log-Likelihood=−3667.960 AIC=7351.9209 SIC=7377.5089

Note: t-statistics with an asterisk are significant at the 5% level.

as observed related monthly indicators xt. These datasets are taken from the

CEPD. We estimate an array of the proposed models with 0 ≤, p, q,≤ 4. The

parameters are estimated using the algorithm described in the previous section

and the Appendixes. This algorithm is initialized by a broad range of random

initial values. The covariance matrix of θ̂ is −H(θ̂)−1, where H(θ̂) is the Hes-

sian matrix of the log-likelihood function evaluated at the QMLE θ̂. Among

all the models considered, the Schwartz Bayesian information criterion (SIC)

select the p = 1 and q = 2 model. The estimation results are summarized in

Table 1. As the table shows, all parameter estimates are statistically signifi-

cant at the 5% level. From Table 1, we found that the difference of IPI has

a significant impact on z∗t (β̂1 = 1.6227). We also found that the invertibility

conditions for the MA part of z∗t are obviously violated. Nevertheless, the ex-

act finite-sample forecasts and Kalman filter algorithm are still valid regardless

of whether the moving average parameters satisfy the invertibility conditions;

see e.g., Hamilton (1994), p.387.

We now conduct some diagnostic checks on the estimated model, including

the Ljung-Box (1978) Q test and the LM test of Engle (1982) on the ARCH

effect. The relevance of diagnostic checking is usually neglected in the liter-
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estimate

confidence intervals

Figure 1: Published quarterly real GDP (left) and estimated monthly real

GDP (right).

ature, one reason being that the innovations are not automatically available

from the implementation of these methods in a classical framework. However,

the smoothed mean of the residual ε̂t = IE(εt | ΩT ) is easy to calculate and is a

byproduct of the Kalman filtering algorithm; see Appendix A for more details.

The resulting statistics for the residuals are Q(12) = 18.147, Q(24) = 26.135

and ARCH(4) = 1.190. These statistics are all insignificant at 5% level un-

der the χ2(12), χ2(24) and χ2(4) distributions. Hence, there appears no serial

correlation and conditional heteroskedasticity in these residuals.

In Figure 1, we plot the published quarterly GDP and the estimated

monthly real GDP in, respectively, the left and right figures. The shaded ar-

eas signify the recession periods identified by CEPD and the label “P” (“T”)

denotes the peak (trough). We find that both of the series in Figure 1 share

a similar dynamic pattern. This shows that the estimated monthly GDP are

consistent with quarterly data. In Table 2, we summarize the business cy-

cle turning points identified by Bry and Boschan (1971) approach, using the

estimated monthly real GDP, IPI, Manufacturing Sales and Nonagricultural

Employment. For comparison purpose, we also check the dates of turning

points by using the quarterly GDP, IPI, Manufacturing Sales and Nonagricul-
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Table 2: Estimated business cycle turning points.

Peaks Troughs

Dataset I Dataset II Dataset I Dataset II

1980:07 1980: 07 1982:07 1982:07

1984:05 1984:05 1985:09 1985:09

1987:07 1987:07 1988:04 1988:04

1989:04 1989:04 1991:02 1991:02

1991:10 1991:10 1993:12 1993:12

1995:01 1995:01 1996:08 1996:08

1998:01 1998:01 1998:12 1998:11

2000:08 2000:08 2001:08 2001:08

2002:05 2002:05 2003:04 2003:04

2004:05 2004:05 2004:11 2004:11

2005:12 2005:12 – –

Note: Dataset I (II) includes estimated monthly real
GDP (quarterly real GDP), IPI, Manufacturing Sales
and Nonagricultural Employment.

tural Employment. It can be seen that both of the turning-point dates match

very closely, except only for the trough on 1998. To examine the data more

carefully we report the monthly disaggregation of real GDP and its forecasts

in Tables 3 and 4. The estimated future values of monthly GDP from 2006:07–

2006:12 are: 1021715.23, 1025819.70, 1029942.43, 1034082.42, 1038238.75, and

1042410.54, respectively. These show that the predicted quarterly GDP for the

period of 2006:III to 2006:IV are 3077477.36 and 3114731.71. Such forecasts

can provide us the early estimates of quarterly GDP in real time.

To demonstrate the applicability of the proposed model, we also report the

estimated monthly real GDP in which the change of IPI and the change of Sales

Index of Trade and Eating-Drinking places are selected as observed related

monthly indicators; see Table 5 for more details. In addition, we also construct
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an “pseudo” annual GDP on the basis of the aggregation of the published

quarterly GDP. Then, by applying the estimation algorithm proposed in this

paper, we obtain “pseudo” estimated quarterly GDP. Table 6 compares the

results of the “pseudo” and the published estimated quarterly GDP.

4 Conclusions

This project is concerned with the temporal disaggregation of Taiwan’s real

GDP that is available only at the quarterly frequency of observations; the re-

sulting monthly estimates incorporated with the information contained in the

monthly IPI are calculated via the state-space approach. The state-space rep-

resentation proposed here has several interesting features. First, it allows the

use of dynamic models for the disaggregation of time series. Second, it admits

high frequency related series and relaxes the assumption of co-integration re-

lation. Third, it nests the traditional linear disaggregation techniques within

more general dynamic specifications. Fourth, it computes the optimal esti-

mates of the latent monthly GDP and provides exact finite-sample forecasts.

Thus, the method proposed here adds more flexibility to the approaches intro-

duced in the literature.

The application of the proposed model to Taiwan’s real GDP suggests

that it is a useful analytical tool in calculating the monthly disaggregation of

real GDP. In particular, our empirical result shows that both the estimated

monthly GDP and the quarter data share a similar dynamic pattern during the

analysis period. It also shows that the turning-point periods of the monthly

GDP closely match the turning-point periods using the quarterly data. The

proposed model thus may serve as an alternative for temporal disaggregation

of time series.

With slight modifications, the methodology adopted here is flexible enough

to allow for almost any kind of disaggregation problem (e.g., annual to quar-

terly, annual to monthly, . . .) and to face interpolation, distribution and ex-

trapolation of time series. Further, it would be very interesting to allow for
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certain nonlinearity system (e.g., structural change, regime switching mecha-

nism, . . .) and to concern the seasonality in the model. This is a future research

direction. Research on several of the topics is currently in progress.

Appendix A: Kalman Filter

The object of the Kalman filter is to update our knowledge of the system each

time a new observation yt is brought in. In this appendix, we show the iteration

and updating steps of the Kalman filter. We first denote the expectation on

the variable X t, conditional on the information available up to time s, as X t|s.

For example, conditional on the information up to time t − 1, the mean and

variance of the state vector γt are

γt|t−1 = IE(γt | Ωt−1)

and

P t|t−1 = IE
[
(γt − γt|t−1)(γt − γt|t−1)

′ | Ωt−1
]
,

where Ωt − 1 denotes the collection of all the observed variables up to time

t− 1.

We now show how to calculate γt+1|t and P t+1|t from γt|t−1 and P t|t−1 recur-

sively in model (3). Let the Kalman filter residual ηt|t−1 = yt − IE(yt | Ωt−1) =

h′
tγt|t−1 and its variance ft = h′

tP t|t−1ht be the one-step-ahead forecast error

and the one-step-ahead forecast error variance of yt given Ωt−1. Under the nor-

mality assumption of εt, the expectation and variance of γt+1, conditional on

Ωt, are given by standard formulae for multivariate normal regression theory:

γt+1|t = µt + Fγt|t−1 + Ktηt|t−1,

P t+1|t = FP t|t−1L
′
t + σ2

εRR′,
(4)

for t = 1, 2, 3, . . . , 3T, where

Kt = FP t|t−1htf
−1
t ,

Lt = F − Kth
′
t.

(5)
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Thus, with the initial values γn+1|n,P n+1|n, we can iterate (4) – (5) to obtain

all the quantities needed for computing the second part of the log-likelihood

function

logL2 = −3T − n

2
log 2π − 1

2

3T∑
t=n+1

(log |ft| + η′t|t−1f
−1
t ηt|t−1),

and the smoothing estimates

γt|T = γt|t−1 + P t|t−1st−1, t = 3T, 3T − 1, . . . , n+ 1,

where st−1 = htf
−1
t ηt|t−1 + L′

tst and s3T = 0. The smoothed mean of residual

can then be calculated by ε̂t = σ2
εR

′st.

Appendix B: Diffuse State Filtering

Given the initializations P∞,1|0 = P∞ = A0A
′
0 and P ∗,1|0 = P ∗ = R0Q0R

′
0,

the exact initial state filtering equation for (3) consists of the following equa-

tions:

f∞,t = h′
tP∞,t|t−1ht,

K∞,t = FP∞,t|t−1htf
−1
∞,t,

L∞,t = F − K∞,th
′
t,

f∗,t = h′
tP ∗,t|t−1ht + σ2

ε ,

K∗,t =
(
FP ∗,t|t−1ht − K∞,tf∗,t

)
f−1
∞,t,

γt+1|t = µt + Fγt|t−1 + K∞,tηt|t−1,

P∞,t+1|t = FP∞,t|t−1L
′
∞,t,

P ∗,t+1|t = FP ∗,t|t−1L
′
∞,t − K∞,tf∞,tK

′
∗,t + σ2

εRR′,

for t = 1, . . . , n. The first part of the log-likelihood function is given by

logL1 = −n
2

log 2π − 1

2

n∑
t=1

ωt,
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where

ωt =

{
log |f∞,t|, if f∞,t is positive definite,

log |f∗,t| + y′tf
−1
∗,t yt, if f∞,t = 0.

Putting logL1 and logL2 together, we obtain the diffuse log-likelihood as

logL = logL1 + logL2.

The exact initial state smoothing equations are give by

γt|T = γt|t−1 + P ∗,t|t−1s
(0)
t−1 + P∞,t|t−1s

(1)
t−1,

where s
(0)
t−1 = L′

∞,ts
(0)
t and s

(1)
t−1 = ht(f

−1
∞,tηt|t−1 − K ′

∗,ts
(0)
t ) + L′

∞,ts
(1)
t .
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Table 3: Monthly disaggregation of real GDP for Taiwan (I).

Date Estimate Date Estimate Date Estimate Date Estimate Date Estimate

1961:01 32191.28 1966:01 52253.63 1971:01 86542.74 1976:01 134852.15 1981:01 214857.99

:02 32510.76 :02 52429.78 :02 87440.97 :02 136177.29 :02 216236.10

:03 33917.75 :03 52989.40 :03 88614.12 :03 137219.77 :03 217441.57

:04 33912.00 :04 53933.60 :04 90063.01 :04 137979.67 :04 218474.74

:05 33886.37 :05 54784.47 :05 91219.87 :05 139044.70 :05 219434.50

:06 33853.65 :06 55541.81 :06 92084.62 :06 140413.33 :06 220319.49

:07 33826.22 :07 56205.29 :07 92657.11 :07 142086.32 :07 221130.20

:08 34260.34 :08 56614.81 :08 93182.52 :08 143807.49 :08 221993.34

:09 35166.51 :09 56770.90 :09 93661.63 :09 145575.04 :09 222909.75

:10 36554.69 :10 56673.61 :10 94093.49 :10 147390.07 :10 223879.54

:11 37093.22 :11 56925.44 :11 94898.43 :11 148853.58 :11 224474.70

:12 36791.27 :12 57526.03 :12 96076.48 :12 149965.74 :12 224694.36

1962:01 35657.48 1967:01 58476.02 1972:01 97627.70 1977:01 150726.79 1982:01 224544.04

:02 35135.19 :02 59207.61 :02 99296.94 :02 152047.31 :02 224729.32

:03 35232.26 :03 59720.66 :03 101083.57 :03 153926.97 :03 225256.49

:04 35955.84 :04 60015.25 :04 102986.84 :04 156366.82 :04 226126.05

:05 36593.39 :05 60263.04 :05 104064.57 :05 157040.16 :05 226751.05

:06 37150.51 :06 60464.75 :06 104317.09 :06 155947.49 :06 227131.81

:07 37632.86 :07 60620.51 :07 103744.10 :07 153089.24 :07 227268.47

:08 38038.71 :08 61130.78 :08 103779.36 :08 153001.05 :08 228069.07

:09 38373.08 :09 61995.43 :09 104425.39 :09 155682.85 :09 229532.42

:10 38640.84 :10 63214.91 :10 105681.00 :10 161138.05 :10 231663.07

:11 38920.18 :11 63927.38 :11 107535.58 :11 165102.89 :11 233234.01

:12 39215.05 :12 64133.13 :12 109987.13 :12 167576.31 :12 234245.50

1963:01 39529.44 1968:01 63832.60 1973:01 113034.85 1978:01 168556.86 1983:01 234699.38

:02 39739.95 :02 63814.38 :02 114798.96 :02 169985.76 :02 235834.45

:03 39849.90 :03 64078.85 :03 115280.07 :03 171861.26 :03 237650.68

:04 39862.70 :04 64626.39 :04 114477.33 :04 174182.49 :04 240150.10

:05 39899.77 :05 65319.20 :05 114588.09 :05 176330.54 :05 242908.21

:06 39964.09 :06 66157.16 :06 115612.99 :06 178305.30 :06 245924.31

:07 40058.28 :07 67140.27 :07 117552.97 :07 180106.93 :07 249199.46

:08 40393.60 :08 67968.87 :08 118943.18 :08 181635.28 :08 251938.02

:09 40972.22 :09 68642.70 :09 119783.13 :09 182891.34 :09 254140.03

:10 41795.81 :10 69161.80 :10 120072.83 :10 183874.33 :10 255805.77

:11 42545.54 :11 69731.98 :11 120626.45 :11 184979.14 :11 257823.66

:12 43223.03 :12 70353.36 :12 121443.94 :12 186208.30 :12 260193.99

1964:01 43829.64 1969:01 71025.97 1974:01 122525.17 1979:01 187558.80 1984:01 262913.54

:02 44340.81 :02 71379.00 :02 122528.99 :02 188666.55 :02 265575.92

:03 44758.14 :03 71413.10 :03 121456.92 :03 189531.75 :03 268177.83

:04 45083.11 :04 71128.56 :04 119308.60 :04 190154.76 :04 270718.87

:05 45311.55 :05 71301.43 :05 117945.21 :05 191027.39 :05 272913.54

:06 45445.00 :06 71931.73 :06 117368.23 :06 192151.24 :06 274763.19

:07 45484.78 :07 73019.97 :07 117578.73 :07 193525.87 :07 276267.25

:08 45634.72 :08 73857.47 :08 117666.93 :08 194849.10 :08 277263.48

:09 45896.22 :09 74444.33 :09 117633.65 :09 196120.70 :09 277749.86

:10 46270.37 :10 74780.04 :10 117478.27 :10 197340.89 :10 277726.59

:11 46817.11 :11 75230.10 :11 117329.66 :11 198669.01 :11 278114.67

:12 47537.07 :12 75795.06 :12 117188.36 :12 200106.29 :12 278917.33

1965:01 48430.62 1970:01 76474.92 1975:01 117055.04 1980:01 201651.24 1985:01 280135.57

:02 49140.57 :02 77342.41 :02 117495.52 :02 203058.03 :02 281457.84

:03 49667.48 :03 78397.44 :03 118509.56 :03 204328.86 :03 282886.69

:04 50011.56 :04 79639.73 :04 120098.62 :04 205459.72 :04 284423.25

:05 50291.25 :05 80571.88 :05 121812.23 :05 206318.98 :05 285594.00

:06 50506.93 :06 81194.20 :06 123650.68 :06 206907.56 :06 286398.98

:07 50659.71 :07 81506.87 :07 125613.39 :07 207225.83 :07 286839.43

:08 50967.31 :08 82102.16 :08 127373.26 :08 207906.08 :08 287775.74

:09 51430.21 :09 82978.91 :09 128929.59 :09 208948.58 :09 289206.76

:10 52049.46 :10 84137.85 :10 130282.20 :10 210352.57 :10 291134.81

:11 52392.54 :11 85118.54 :11 131720.21 :11 211806.16 :11 294518.15

:12 52461.38 :12 85920.07 :12 133243.56 :12 213308.08 :12 299355.29
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Table 4: Monthly disaggregation of real GDP for Taiwan (II).

Date Estimate Date Estimate Date Estimate Date Estimate Date Estimate

1986:01 305648.51 1991:01 465178.13 1996:01 649831.49 2001:01 836090.43 2006:01 1003251.99

:02 309832.03 :02 467311.48 :02 654139.53 :02 832986.34 :02 1004282.29

:03 311905.04 :03 469558.49 :03 659065.28 :03 828469.05 :03 1006550.95

:04 311867.65 :04 471920.63 :04 664608.26 :04 822543.15 :04 1010057.79

:05 313042.38 :05 475076.32 :05 669236.81 :05 817619.49 :05 1013750.97

:06 315430.65 :06 479026.79 :06 672949.86 :06 813704.45 :06 1017630.04

:07 319033.60 :07 483773.60 :07 675749.32 :07 810800.66 :07 1021715.23∗

:08 322927.47 :08 487426.35 :08 678971.29 :08 810898.17 :08 1025819.70∗

:09 327111.62 :09 489986.97 :09 682614.77 :09 814002.84 :09 1029942.43∗

:10 331585.00 :10 491457.72 :10 686681.59 :10 820110.18 :10 1034082.42∗

:11 335938.07 :11 493727.58 :11 690475.60 :11 825860.97 :11 1038238.75∗

:12 340169.04 :12 496796.06 :12 693998.33 :12 831249.97 :12 1042410.54∗

1987:01 344275.45 1992:01 500662.38 1997:01 697253.06 2002:01 836272.02

:02 348059.57 :02 504325.98 :02 700469.67 :02 841481.24

:03 351520.50 :03 507781.65 :03 703649.49 :03 846880.88

:04 354655.26 :04 511031.83 :04 706793.89 :04 852470.39

:05 357878.80 :05 514062.75 :05 710648.18 :05 856535.61

:06 361189.83 :06 516875.73 :06 715212.62 :06 859077.44

:07 364587.47 :07 519468.59 :07 720482.23 :07 860092.37

:08 367126.50 :08 522266.05 :08 725519.01 :08 861566.49

:09 368808.37 :09 525269.11 :09 730320.26 :09 863498.18

:10 369632.36 :10 528474.39 :10 734885.53 :10 865887.36

:11 370743.22 :11 531608.84 :11 737910.59 :11 867978.64

:12 372141.21 :12 534669.74 :12 739395.11 :12 869773.49

1988:01 373828.47 1993:01 537660.08 1998:01 739344.73 2003:01 871275.59

:02 375887.66 :02 540526.19 :02 740178.28 :02 869611.55

:03 378320.89 :03 543270.31 :03 741902.42 :03 864788.94

:04 381125.73 :04 545890.69 :04 744514.53 :04 856811.40

:05 384417.75 :05 548829.77 :05 747268.80 :05 857425.89

:06 388195.97 :06 552088.08 :06 750163.62 :06 866627.02

:07 392459.49 :07 555664.28 :07 753200.91 :07 884417.52

:08 395778.68 :08 559141.17 :08 755918.39 :08 898104.61

:09 398151.85 :09 562517.53 :09 758317.56 :09 907679.95

:10 399579.02 :10 565793.20 :10 760403.07 :10 913135.66

:11 401509.46 :11 569159.65 :11 762403.67 :11 918030.90

:12 403943.04 :12 572613.24 :12 764320.84 :12 922362.68

1989:01 406881.25 1994:01 576159.59 1999:01 766153.63 2004:01 926137.83

:02 410134.67 :02 579482.63 :02 771682.91 :02 929897.86

:03 413702.38 :03 582584.04 :03 780904.34 :03 933636.22

:04 417584.05 :04 585464.59 :04 793818.16 :04 937353.08

:05 420929.78 :05 588585.87 :05 800374.93 :05 940543.67

:06 423737.20 :06 591945.51 :06 800576.13 :06 943214.02

:07 426005.65 :07 595545.91 :07 794417.76 :07 945363.86

:08 427903.51 :08 599671.73 :08 793274.94 :08 945442.92

:09 429432.95 :09 604317.24 :09 797147.72 :09 943452.36

:10 430591.42 :10 609485.76 :10 806038.21 :10 939394.80

:11 432604.67 :11 613792.25 :11 813228.68 :11 939378.34

:12 435473.10 :12 617238.25 :12 818719.00 :12 943403.40

1990:01 439196.16 1995:01 619821.36 2000:01 822503.41 2005:01 951469.24

:02 440871.08 :02 622423.00 :02 826812.48 :02 957795.53

:03 440498.00 :03 625041.89 :03 831639.63 :03 962382.25

:04 438080.77 :04 627678.14 :04 836983.15 :04 965227.93

:05 437975.70 :05 630585.55 :05 841650.56 :05 968836.24

:06 440182.36 :06 633768.23 :06 845639.29 :06 973205.34

:07 444703.93 :07 637222.38 :07 848953.14 :07 978337.23

:08 449042.78 :08 639722.32 :08 849739.09 :08 983999.38

:09 453196.36 :09 641269.08 :09 847997.68 :09 990197.41

:10 457165.53 :10 641862.39 :10 843733.27 :10 996931.93

:11 460484.85 :11 643487.08 :11 840326.69 :11 1001352.29

:12 463156.29 :12 646143.09 :12 837777.34 :12 1003459.22

Note: Data with an asterisk are predicted monthly real GDP.
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Table 5: Monthly disaggregation of real GDP for Taiwan: Two related variables.

Date Estimate Date Estimate Date Estimate Date Estimate

1999:01 770598.8216 2001:01 836680.0981 2003:01 871035.4068 2005:01 953033.2718

:02 773023.3089 :02 832085.0791 :02 866647.3698 :02 956080.8798

:03 775118.7495 :03 828780.6528 :03 867993.3034 :03 962532.8585

:04 795498.0073 :04 821723.9018 :04 854620.4743 :04 964327.2364

:05 795664.6237 :05 817628.1186 :05 862158.5948 :05 969430.0663

:06 803606.5890 :06 814515.0696 :06 864085.2410 :06 973512.2073

:07 791630.8323 :07 810572.0718 :07 887679.0740 :07 978837.0033

:08 797005.0092 :08 811881.4126 :08 894969.6272 :08 984373.6427

:09 796204.5885 :09 813248.1856 :09 907553.3888 :09 989323.3740

:10 807887.7452 :10 820767.9162 :10 911912.7958 :10 997364.7044

:11 811321.1423 :11 825261.2459 :11 918602.0874 :11 1000132.558

:12 818777.0025 :12 831191.9579 :12 923014.3568 :12 1004246.177

2000:01 821791.5386 2002:01 836140.9385 2004:01 926089.3182 2006:01 1002303.929

:02 827625.8945 :02 841869.2546 :02 930200.4188 :02 1005219.248

:03 831538.0869 :03 846623.9469 :03 933382.1730 :03 1006562.063

:04 837629.1643 :04 852699.7200 :04 937845.8653 :04 1010601.384

:05 841786.6419 :05 855839.0658 :05 940571.6219 :05 1013551.221

:06 844857.1838 :06 859544.6542 :06 942693.2828 :06 1017286.195

:07 849172.3225 :07 859428.9518 :07 945191.1739 :07

:08 848701.4895 :08 862157.0178 :08 943998.0885 :08

:09 848816.0980 :09 863571.0704 :09 945069.8776 :09

:10 843048.1280 :10 866682.1882 :10 938225.2896 :10

:11 841476.3730 :11 868407.3024 :11 941681.0248 :11

:12 837312.7990 :12 868549.9994 :12 942270.2355 :12
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Table 6: Pseudo quarterly disaggregation of real GDP for Taiwan.

Date Published Estimate Date Published Estimate Date Ppublished Estimate

1961:I 98619.79 96329.15 1976:I 408249.21 413418.77 1991:I 1402048.10 1411851.00

:II 101652.01 102758.65 :II 417437.69 414553.94 :II 1426023.75 1419746.97

:III 103253.07 102547.20 :III 431468.85 434724.57 :III 1461186.92 1464853.28

:IV 110439.18 112329.05 :IV 446209.39 440667.87 :IV 1481981.36 1474788.87

1962:I 106024.92 104140.81 1977:I 456701.07 454185.25 1992:I 1512770.01 1520963.25

:II 109699.74 115180.94 :II 469354.46 459305.96 :II 1541970.31 1532251.95

:III 114044.64 108554.31 :III 461773.14 483496.21 :III 1567003.75 1574989.21

:IV 116776.07 118669.31 :IV 493817.25 484658.49 :IV 1594752.96 1588292.62

1963:I 119119.29 113995.41 1978:I 510403.88 520357.16 1993:I 1621456.57 1628564.27

:II 119726.56 123284.35 :II 528818.33 521414.89 :II 1646808.53 1639761.89

:III 121424.10 121071.72 :III 544633.55 546001.46 :III 1677322.98 1687560.04

:IV 127564.38 129482.85 :IV 555061.76 551144.01 :IV 1707566.10 1697267.98

1964:I 132928.59 129869.89 1979:I 565757.10 565056.74 1994:I 1738226.26 1751644.95

:II 135839.66 136247.54 :II 573333.40 573447.92 :II 1765995.97 1760765.08

:III 137015.71 137229.97 :III 584495.66 585990.04 :III 1799534.88 1809894.64

:IV 140624.55 143061.11 :IV 596116.20 595207.66 :IV 1840516.26 1821968.69

1965:I 147238.66 145606.30 1980:I 609038.14 606234.27 1995:I 1867286.24 1866428.67

:II 150809.74 151208.26 :II 618686.26 616708.30 :II 1892031.93 1881330.66

:III 153057.24 152949.49 :III 624080.49 626943.57 :III 1918213.79 1922184.08

:IV 156903.38 158244.97 :IV 635466.81 637385.56 :IV 1931492.56 1939081.12

1966:I 157672.81 158923.04 1981:I 648535.66 647032.37 1996:I 1963036.30 1981177.49

:II 164259.88 164774.92 :II 658228.73 661000.42 :II 2006794.92 1994523.04

:III 169591.00 167041.45 :III 666033.30 659320.95 :III 2037335.39 2047265.06

:IV 171125.08 171909.36 :IV 673048.60 678492.55 :IV 2071155.52 2055356.55

1967:I 177404.29 176452.86 1982:I 674529.85 666101.59 1997:I 2101372.22 2119423.70

:II 180743.04 181259.12 :II 680008.91 684282.32 :II 2132654.70 2131539.87

:III 183746.71 185114.05 :III 684869.96 688360.80 :III 2176321.50 2174766.30

:IV 191275.43 190343.44 :IV 699142.58 699806.59 :IV 2212191.23 2196809.77

1968:I 191725.83 193351.44 1983:I 708184.51 720657.65 1998:I 2221425.43 2213677.52

:II 196102.75 198452.36 :II 728982.62 726692.92 :II 2241946.95 2239427.30

:III 203751.84 201711.18 :III 755277.51 758335.58 :III 2267436.86 2272823.45

:IV 209247.14 207312.59 :IV 773823.42 760581.92 :IV 2287127.58 2292008.55

1969:I 213818.07 211210.75 1984:I 796667.29 802615.90 1999:I 2318740.88 2340087.58

:II 214361.72 215639.95 :II 818395.60 808488.60 :II 2394769.22 2355518.51

:III 221321.76 222403.07 :III 831280.59 826646.08 :III 2384840.43 2414333.57

:IV 225805.20 226052.98 :IV 834758.58 843351.48 :IV 2437985.89 2426396.76

1970:I 232214.77 235391.15 1985:I 844480.10 837405.01 2000:I 2480955.52 2494536.69

:II 241405.81 238020.44 :II 856416.23 853582.09 :II 2524272.99 2525361.08

:III 246587.94 249955.45 :III 863821.93 877297.37 :III 2546689.91 2491140.68

:IV 255176.46 252017.94 :IV 885008.25 881442.04 :IV 2521837.30 2562717.26

1971:I 262597.83 265979.56 1986:I 927385.58 934389.07 2001:I 2497545.83 2424949.76

:II 273367.50 267683.77 :II 940340.68 930297.11 :II 2453867.09 2497833.91

:III 279501.26 282666.70 :III 969072.69 993893.76 :III 2435701.67 2454872.36

:IV 285068.41 284204.96 :IV 1007692.11 985911.12 :IV 2477221.12 2486679.67

1972:I 298008.20 300659.74 1987:I 1043855.53 1059929.36 2002:I 2524634.14 2539333.31

:II 311368.50 301280.65 :II 1073723.89 1053892.97 :II 2568083.44 2552167.63

:III 311948.84 321761.75 :III 1100522.34 1106288.99 :III 2585157.04 2585034.83

:IV 323203.70 320827.10 :IV 1112516.79 1110507.24 :IV 2603639.49 2604978.34

1973:I 343113.87 345020.21 1988:I 1128037.02 1141328.28 2003:I 2605676.08 2617858.92

:II 344678.41 347146.67 :II 1153739.45 1149197.16 :II 2580864.31 2636306.71

:III 356279.28 352003.16 :III 1186390.01 1189121.95 :III 2690202.09 2685306.37

:IV 362143.21 362044.72 :IV 1205031.52 1193550.60 :IV 2753529.24 2690799.72

1974:I 366511.07 348284.34 1989:I 1230718.31 1243092.04 2004:I 2789671.91 2778185.75

:II 354622.04 360909.14 :II 1262251.04 1250474.85 :II 2821110.77 2784806.30

:III 352879.31 353184.83 :III 1283342.11 1283099.29 :III 2834259.14 2841264.11

:IV 351996.29 363630.40 :IV 1298669.19 1298314.47 :IV 2822176.55 2862962.21

1975:I 353060.12 361048.58 1990:I 1320565.24 1311421.33 2005:I 2871647.01 2888103.12

:II 365561.53 367455.51 :II 1316238.82 1328781.06 :II 2907269.51 2916190.98

:III 381916.25 383143.30 :III 1346943.07 1357301.66 :III 2952534.02 2951557.36

:IV 395245.96 384136.46 :IV 1380806.67 1367049.75 :IV 3001743.44 2977342.52
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